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1. Rabotnov [ 1 1 has constructed a new special function 

3, (5, 5) = a-= ; x”s” (l-=1 [r (v - va- a + I)]-’ (0 < a < i) (1) 
v-0 

which serves as the kernel of an integral operator a.‘, and has established 
two fundamental properties of this operator, which make Volterra’s prin- 
ciple [ 1 1 the most effective means of solving problems in the linear 
theory of creep of homogeneous and isotropic bodies. This principle can 
also be successfully employed in solving problems in the theory of creep 
of nonhomogeneous and anisotropic bodies, if one can establish appropriate 
properties of 

Theorem f. 

the class of a,‘-operators. 

If x1 f x2 # .a* f XII’ then for I > 1 we have 

(k# i) (2) 

Proof. We can verify (2) by mathematical induction. Indeed, for I = 2 
the relation (2) coincides with the formula of Rabotnov [l 1 

3,’ (Xl) 3.‘(4 = El,’ h) - 3,’ WI (Xl - xd-1 (3) 

Let 
m-1 

l--j 3,’ ('k) = 1’ [fj (“k - ?)]-’ 3,’ (‘k) 
k-1 k=l i=l 

Then m m-i 

fl 3,'(I&) = 3a*(%) n 3,‘(“k) = 

J-1 X=1 
m m 

= y [ijI (xx - q)]” 
k-1 f-1 

13: (zk) - 3,' (%n)] = 2 [~(zk-s)]-'3.'(%). 
k-1 i-1 
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since 

Y [fi (% 
k=l (==I 

- q]-’ = - f_f&c_- z,)] -I 

f=l 

Thus, the validity of (2) has been proved. 

Coral lary. For x1 # x2 f . . . f xw it follows from (2) that 

i M!x fi %x0 (%(;n) = i ([ii (‘k - z,l-1 my, $} 3.’ (‘k) (41 
X=-l ?I=1 k=l i=l r-k 

Remark. When the xik have the same values, the right-hand sides of (2) 
and (4) become indeterminate. In order to clarify this indeterminacy it 
is convenient to rewrite (2) in the following form 

fi 3: (‘k) = [‘(m) (‘1, ’ * * ’ zm)j-l jl Ak; m-l&* (%k) (5) 
k-1. z¶ 

where AI. n_l is the cofactor of the element zE^ ’ (& = 1, . . . , a) of 
the Vandkrmonde determinant V(a) (sl, . , , , x,). Then for x1 = . . . = “j+ 1’ 
where J’ + 1 < I, it follows front (5) that 

In (6) the differentiation is performed first with respect to x1, then 
with respect to x2, after substituting x2 for x1, and SO on up to Xi. 

For xi = . . . = xi+ 1 the formula (4) is transformed in a similar 
fashion. 

Theoren 2. If r1 # r2 f . . . f rm, then 

k-1 n-i X-1 

where rh(k = 1, 2, . . . . R) are the roots of the equation 

(Bk=[i (Ok -x1,]-’ fi .Mp) 
f=1 p-k 

(7) 

(8) 

and the coefficients ak are determined from the system of linear equations 

I+; (~,,-rk)-1tZk=6, B,,#Q (n = 1,. . . , m) (9) 
k=l 

the determinant of which does not vanish. 

Proof: It follows from (71, taking note of (41, that 
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After employing (3) 2~ times, we obtain from (10) 

$ [‘k(’ + i 
k=l n=1 

~~~3.‘(rk)-Bk(‘+~~~)3.‘(Tk)] =’ (‘I) 
m 

Since all the ak and Bk do not vanish simultaneously, it follows from 
(11) that 

I+ 5 Bk(zk- Q-l= 0, 
k=l 

%k-J: ‘n w1 

i + 5 Uk(Bn- rk)-I= 0, B,,#rk (n = 1 , . . . , m) (13) 
he 

From the form of the R equations (12) it follows that rn are roots of 

(5). 

The system of equations (13) coincides with (9) and serves to deter- 
mine the coefficients ak, which can be expressed in terms of the already 
known quantities rk and B,(n, k = 1, . . . , IR). 

Remark. In the case of multiple roots of (81, derivatives of 
operator appear on the right-hand side of (7), similar to (6), after the 
indeterminacy is eliminated. 

2. As an application of the above, let us examine the problem of the 
torsion of a shaft made up of IR cylindrical layers, rigidly welded along 
the surfaces of contact, taking into account the creep of each layer. If 
each layer has cylindrical anisotropy, coinciding with the axis of the 
shaft, and if there exist planes of hereditary-elastic symmetry, then in 
order to apply Volterra’s principle one must replace the elastic constants 

Gez k in formula (44.13) of Lekhnitskii’s book [ 2 1, which defines the 
stresses rgzk (index k = 1, . . . , at), by the operators 

GM 
- k’=G a,ko [i - ~~3.’ (- &)] (@A = -$--l, xk = $$+-1, h, = (G,,k* - Ge,k”) / G;;) 

where rk is the relaxation time, and Gd, k” and Go, km are the instant- 
aneous and the steady state shear moduli of the material in the kth 
layer. Since Gofb’ > GozkW, it follows that 0 < h, < 1. As a result of 
this change, and after several transformations, we obtain 

where 



Special operators used in the theory of creep 1401 

40 = c&&k0 (bk - bk-I) [i (bk - b,,) G (15) 
J-1. 

Here bk is the distance of the boundary between the kth and (k + I)-st 
layer from the axis ( b0 = O, bm = 6, where a and b are the inner and outer 
radii of the shaft cross-section), rg, t and r8zko are the effective and 
the instantaneous stresses. The shaft is deformed by twisting moments kf6 
which do not change with time t, and which are applied at the ends of the 
shaft. In this problem Xk = - p& and B& = q&X&, where @& > 6, 0 < qk < 1, 
Xk< pk. Therefore, equation (8) is transformed into 

Here 

The structure of the coefficients of (16) is such that the inequality 

&q, +*.*t Qi, <I (17) 

is a sufficient condition for the positiveness of all the coefficients of 
(16). A condition necessary to satisfy (17) always holds, since 0 < 
‘iqi < 1. For II = 1 (the case of a homogeneous shaft) we have h,q, < 1, 
which gives r < 0; for a = 2 the inequality (17) is sufficient to 
guarantee that the real parts of the roots of (16) be negative; for I > 2 
we must impose the Hurwitz conditions in addition to (17). for all the 
roots of (16) to have the character indicated above. 

If r& are simple roots of (161, then it follows from (14) that 

01 = xk[l - ‘k (pk -t rk)-l], 02 = ak [ 1 - xk (bk + rk)-lj 

Here the coefficients a& are determined from (8) with B& t x&gk’ The 
expression (18) is a series converging for any t, since the g,-function 
is defined by the uniformly converging series Cl). Since the series (18) 
converges slowly, it is reasonable to approximate r~skt in the form 
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where y = (1 - o)i-a. 
a = 0. 

i 2 (1 - exp (- 7Pkt1-‘f) + -$ (1 - exp (:~~t~-‘))]) (19) 

The approximate equation (19) becomes exact for 

Consequently, if all the shaft layers have the same creep &yaeter- 
istics, 7 ot kt can change in one way only as t -, 00. namely, 70 must z 
approach a finite 1 imit monotonically. 

If the creep characteristics of the shaft layers differ from each 
other, then the approach of ~8~ kt to a steady (limiting) state as t + 8 
can take place by means of a monotonic, nonmonotonic, and a retarded 
change of fez kt with time, depending on the character of the roots of 
(16). The case where there is no finite limiting value for rgzkt as t+s 
is also possible. 

BIB~I~RAPHY 

1. Rabotnov. Iu. N., P.4M Vol. 12, No. 1, 1948. 

2. Lekhnitskii, S. G., Teoria uprugosti anizotropnogo tela (Theory of 
Elasticity of Anisotropic Bodies). Gostekhizdat, 1950. 

Translated by M.Y. 


